1.4.4 大数据与人工智能

大数据是物联网、Web和信息系统发展的综合结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等。大数据的价值主要体现在分析和应用上,例如大数据场景分析等。

人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示六大方向。机器学习的应用范围比较广泛,例如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是人工智能研究的主流方向之一。

大数据和人工智能虽然关注点不同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,例如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。

大数据相关技术已经趋于成熟,相关的理论体系逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,从大数据开始是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。