- 中国新材料研究前沿报告2020
- 中国工程院化工 冶金与材料工程学部 中国材料研究学会编写
- 5378字
- 2021-12-24 14:15:30
参考文献
[1] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films. Science,2004,306:666-669.
[2] Geim A K,Novoselov K S. The rise of graphene. Nat. Mater.,2007,6:183.
[3] Castro A H,Guinea F and Peres N M R et al. The electronic properties of graphene. Rev. Mod. Phys.,2009,81:109-162.
[4] Novoselov K S,Geim A K,Morozov S V,et al. Two-dimensional gas of tomassless Dirac fermions in graphene. Nature,2005,438:197.
[5] Nomura K,MacDonald A H. Quantum transport of massless Dirac fermions. Phys. Rev. Lett.,2007,98:076602.
[6] Park C H,Yang L,Son Y W,et al. New generation of massless Dirac fermions in graphene under external periodic potentials. Phys. Rev. Lett.,2008,101:126804.
[7] Morozov S V,Novoselov K S,Katsnelson M I,et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.,2008,100:016602.
[8] Cao Y,Fatemi V,Demir A,et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature,2018,556:80-84.
[9] Cao Y,Fatmi V,Fang S,et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature,2018,556:43-50.
[10] Xu X D,Yao W,Xiao D,et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.,2014,10:343-350.
[11] Guo L,Wu M,Cao T,et al. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys.,2019,15:228.
[12] Zhao K,Lin H C,Xiao X,et al. Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nat. Phys.,2019,15:904.
[13] Tang S J,Zhang C F,Wong D,et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys.,2017,13:683.
[14] Kim J,Hong X P,Jin C H,et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science,2014,346:1205-1208.
[15] Qian X F,Liu J W,Fu L,et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science,2014,346:1344-1347.
[16] Li R H,Ma H,Cheng X Y,et al. Dirac node lines in pure alkali earth metals,Phys. Rev. Lett.,2016,117:096401.
[17] Li R H,Li J X,Wang L,et al. Underlying Topological Dirac Nodal Line Mechanism of the Anomalously Large Electron-Phonon Coupling Strength on a Be(0001)Surface. Phys. Rev. Lett.,2019,123:136802.
[18] Nagamatsu J,Nakagawa N,Muranaka T,et al. Superconductivity at 39 K in magnesium diboride. Nature,2001,410:63-64.
[19] Jin K H,Huang H Q,Mei J W,et al. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac-nodal-line fermions. npj Comput. Mater.,2019,5:57.
[20] Li J X,Xie Q,Liu J X,et al. Phononic Weyl nodal straight lines in MgB2. Phys. Rev. B 2020,101:024301.
[21] Zhang H J,Liu C X,Qi X L,et al. Topological insulators Bi2Se3,Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys.,2009,5:438-442.
[22] Gong C,Li L,Li Z L,et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature,2017,546:265.
[23] Deng Y J,Yu Y J,Song Y C,et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature,2018,563:94.
[24] Huang B,Clark G,Navarro-Moratalla E,et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature,2017,576:270-273.
[25] Li J H,Li Y,Du S Q,et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv.,2019,5:eaaw5685.
[26] Zhang D Q,Shi M J,Zhu T S,et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect. Phys. Rev. Lett.,2019,122:206401.
[27] Deng Y,Yu Y,Shi M Z,et al. Quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science,2020,367:895.
[28] Kang M G,Ye L D,Fang S,et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater.,2020,19:163.
[29] Lou R,Guo P J,Li M,et al. Experimental observation of bulk nodal lines and electronic surface states in ZrB2. npj Quantum Mater.,2018,3:43.
[30] Wang Z J,Sun Y,Chen X Q,et al. Dirac semimetal and topological phase transitions in A3Bi(A= Na,K,Rb). Phys. Rev. B,2012,85:195320.
[31] Liu Z K,Zhou B,Zhang Y,et al. Discovery of a Three-Dimensional Topological Dirac Semimetal,Na3Bi. Science,2014,343:864-867.
[32] Xiong J,Kushwaha S K,Liang T,et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science,2015,350:413-416.
[33] Xie L S,Schoop L M,Seibel E M,et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Materials,2015,3:083602.
[34] Chan Y H,Chiu C K,Chou M Y,et al. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B,2016,93:205132.
[35] Dikin D A,Stankovich S,Zimney E J,et al. Preparation and characterization of graphene oxide paper. Nature,2007,448:457-460.
[36] Li J X,Wang L,Liu J X,et al. Topological phonons in graphene. Phys. Rev. B,2020,101:081403(R).
[37] Elias D C,Gorbachev R V,Mayorov A S,et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys.,2011,7:701-704.
[38] Jiang J W,Wang J S,Li B W. Thermal conductance of graphene and dimerite. Phys. Rev. B,2009,79:205418.
[39] Radisavljevic B,Radenovic A,Brivio J,et al. Single-layer MoS2 transistors. Nat. Nanotech,2011,6:147-150.
[40] Mak K F,Lee C,Hone J,et al. Atomically Thin MoS2:A New Direct-Gap Semiconductor. Phys. Rev. Lett.,2010,105:136805.
[41] Jaramillo T,Jorgensen K P,Bonde J,et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science,2007,317:100-102.
[42] Xiao D,Liu G B,Fang W X,et al,Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett.,2012,108:196802.
[43] Qian X F,Liu J W,Fu L,et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science,2014,346:1344-1347.
[45] Geim A K,Grigorieva I V. Van der Waals heterostructures. Nature,2013,499:419-425.
[46] Levendrof M P,Kim C J,Brown L,et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature,2012,488:627-632.
[47] Soluyanov A A,Gresch D,Wang Z,et al. semimetals. Nature,2015,527:495-498.
[48] Li P,Wen Y,He X,et al. Evidence for topological type-II Weyl semimetal WTe2. Nature Communications,2017,8:1-8.
[49] Eftekhari A,Tungsten dichalcogenides(WS2,WSe2,and WTe2):materials chemistry and applications. J. Mater. Chem. A,2017,5:18299-18325.
[50] Xiang H,Xu B,Liu J,et al. Quantum spin Hall insulator phase in monolayer WTe2 by uniaxial strain. AIP Advances,2016,6:095005.
[51] Kormányos A,Zólyomi V,Drummond N D,et al. Spin-Orbit Coupling,Quantum Dots,and Qubits in Monolayer Transition Metal Dichalcogenides. Phys. Rev. X,2014,4:011034.
[52] Xia F,Wang H,Xiao D,et al. Two-dimensional material nanophotonics. Nature Photonics,2014,8:899-907.
[53] Yang L M,et al. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc.,2015,137:2757.
[54] Feng Baojie,Fu Botao,Kasamatsu Shusuke,et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nature Communications,2107,8:1007.
[55] Cameau M,Yukawa R,Chen C H,et al. Electronic structure of a monoatomic Cu2Si layer on a Si(111)substrate. Phys. Rev. Mater.,2019,3:044004.
[56] Luo Yan,Peng-Fei Liu,Tao Bo,et al. Emergence of superconductivity in a Dirac nodal-line Cu2Si monolayer:ab initio calculations. J. Mater. Chem. C,2019,7:10926.
[57] Johansson L,Johansson H,Andersen J N,et al. 3 surface-shifted core levels on Be(0001). Phys. Rev. Lett.,1993,71:2453-2456.
[58] Hosur P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B,2012,86:195102.
[59] Neuman E W,Hilmas G E,Fahrenholtz W G. Ultra-high temperature mechanical properties of a zirconium diboride-zirconium carbide ceramic. J. Am. Ceram. Soc.,2016,99:597-603.
[60] Wuchina E J,Opila E,Opeka M,et al. UHTCs:Ultra-high temperature ceramic materials for extreme environment applications. The Electrochem. Soc. Interf.,2017,16:30-36.
[61] Fahrenholtz W G,Wuchina E J,Lee W E,et al. Ultra-High Temperature Ceramics:Materials for Extreme Environment Applications. John Wiley & Sons,Inc.,Hoboken,NJ,2014:112-143.
[62] Li X S,Wang C,Deng M X,et al. Photon-Induced Weyl Half-Metal Phase and Spin Filter Effect from Topological Dirac Semimetals. Phys. Rev. Lett.,2019,123:206601.
[63] Fahrenholtz W G,Wuchina E J and Lee WE et al. Ultra-high temperature ceramics:materials for extreme environment applications. John Wiley & Sons,Inc.,Hoboken N J,112-143,2014.
[64] Jenkins GS,Lane C and Barbiellini B et al. Three-dimensional Dirac cone carrier dynamics in Na3Bi and Cd3As2. Phys Rev B 2016;94:085121.
[65] Cheng X Y,Li R H and Sun Y et al. Ground-state phase in the three-dimensional topological Dirac semimetal Na3Bi. Phys Rev B 2014;89:245201.
[66] Wright D A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958;181:834.
[67] Synyder G F and Toberer E S. Complex thermoelectric materials. Nat Mater 2008;7:105-114.
[68] Hasan M Z and Kane C L. Colloquim:topological insulators. Rev Mod Phys 2010;82:3045-3067.
[69] Fu L,Kane C L and Mele E J. Topological insulators in three dimensions. Phys Rev Lett 2007;98:106803.
[70] Qi X L and Zhang S C. Topological insulators and superconductors. Rev Mod Phys 2011;83:1057-1110.
[71] Weng H M,Fang C and Fang Z et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 2016;93:241202.
[72] Weng H M,Fang C and Fang Z et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys Rev B 2016;94:165201.
[73] Zhu Z,Winkler GW and Wu QS et al. Triple point topological metals. Phys Rev X 2016;6:031003.
[74] Chang G Q,Xu S Y and Huang S M et al. Nexus fermions in topological symmorphic crystalline metals. Sci Rep 2017;7:1688.
[75] He J B,Chen D and Zhu W L et al. Magnetotransport properties of the triply degenerate node topological semimetal:tungsten carbide. Phys Rev B 2017;95:195165.
[76] Lv B Q,Feng Z L and Xu Q N et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 2017;546:627-631.
[77] Li J X,Xie Q and Ullah S et al. Coexistent three-component and two-component Weyl phonons in TiS,ZrSe,and HfTe. Phys Rev B 2018;97:054305.
[78] Xie Q,Li J X and Ullah S et al. Phononic Weyl points and one-way topologically protected nontrivial phononic surface arc states in noncentrosymmetric WC-type materials. Phys Rev B 2019;99:174306.
[79] Ullah S,Wang L and Li J X et al. Structural,elastic,and electronic properties of topological semimetal WC-type MX family by first-principles calculation. Chin Phys B 2019;28:077105.
[80] Singh S,Wu Q S and Yue C M et al. Topological phonons and thermoelectricity in triple-point metals. Phys Rev M 2018;2:114204.
[81] Xu Q N,Liu E K and Shi W J et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys Rev B 2018;97:235416.
[82] Liu E K,Sun Y and Nitesh K et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat Phys 2018;14:1125-1131.
[83] Liu D F,Liang A J and Liu E K et al. Magnetic Weyl semimetal phase in a Kagomé crystal (Co3Sn2S2). Science 2019;365:1282-1285.
[84] Noam M,Rajib B and Pranab K N et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019;365:1286-1291.
[85] Yin J X,Zhang S T and Chang G Q et al. Negative flat band magnetism in a spinorbit coupled correlated kagome magnet. Nat Phys 2019;15:443-448.
[86] Kane C L and Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett 2005;95:226801.
[87] Bernevig B A and Zhang S C. Quantum spin Hall effect. Phys Rev Lett 2006;96:106802.
[88] Bernevig B A and Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006;314:1757-1761.
[89] Markus K N,Christoph B R and Andreas R et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007;318:766-770.
[90] Chen X Q. Boosting the discovery of 3D topological materials:mixing chemistry with physics via a two-step computational screening strategy. Natl Sci Rev 2018;5:316-318.
[91] Chang C Z,Zhang J S and Feng X et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013;340:167-170.
[92] Roth A,Brune C and Buhmann et al. Nonlocal transport in the quantum spin Hall state. Science 2009;325:294-297.
[93] Kim J,Hong X P and Jin CH et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 2014;346:1205-1208.
[94] Jones A M,Yu H Y and Ross JS et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat Phys 2014;10:130-134.
[95] Fei Z Y,Palomaki T and Wu SF et al. Edge conduction in monolayer WTe2. Nat Phys 2017;13:677-682.
[96] Tang S J,Zhang C F and Wong D et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat Phys 2017;13:683-687.
[97] Zheng F P,Cai C Y and Ge S F et al. On the quantum spin Hall gap of monolayer 1T’-WTe2. Adv Mater 2016;28:4845-4851.
[98] Xia Y,Qian D and Hsieh D et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys 2009;5:398-402.
[99] Chen H,Zhu W G and Xiao D et al. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys Rev Lett 2011,107:056804.
[100] Rajamathi C R,Gupta U and Kumar N et al. Weyl semimetals as hydrogen evolution catalysts. Adv Mater 2017;29:1606202.
[101] Li J X,Ma H and Xie Q et al. Topological quantum catalyst:Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci China Mater 2018;61:23-29.
[102] Park H,Encinas A and Scheifers J P et al. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 2017;56:5575–5578.
[103] Zhou D,Wang J S and Cui Q L et al. Crystal structure and physical properties of Mo2B:first-principle calculations. J Appl Phys 2014;115:113504.
[104] Rajpoot P,Rastogi A and Verma U P. Physical properties of molybdenum monoboride:ab-initio study. Philos Mag 2018;98:422–436.
[105] Shein I R and Ivanovskii A L. Influence of lattice vacancies on the structural,electronic,and cohesive properties of niobium and molybdenum borides from firstprinciples calculations. Phys Rev B 2006;73:144108.
[106] Yang Y Q,Sun C H and Wang L Z et al. Constructing metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution. Adv Energy Mater 2014;4:1400057.
[107] He Y,Yan D and Wang S et al. Topological type-II Dirac semimetal and superconductor PdTe2 for ethanol electrooxidation. Energy Technol 2019;7:1900663.
[108] Liu G,Yang H G and Sun C H et al. Titania polymorphs derived from crystalline titanium diboride. CrystEngComm 2009;11:2677-2682.
[109] Zhang Y,Yang Y and Sun H et al. Synthesis of TiB2 powders with hexagonal morphology by Sol–Gel method. J Nanosci Nanotech 2019;19:7886-7891.
[110] Xu C,Wang L B and Liu Z B et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 2015;14:1135-1141.
[111] Hong Y L,Liu Z and Wang L et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020;369:670-674.
[112] Pei S F,Wei Q W and Huang K et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun 2018;9:145.
[113] Zhang C,Tan J Y and Pan Y K et al. Mass production of two-dimensional materials by intermediate-assisted grinding exfoliation. Natl Sci Rev 2020;7:324-332.
[114] Pan Y,Zhang L Z and Huang L et al. Construction of 2D atomic crystals on transition metal surfaces:graphene,silicene,and hafnene. Small 2014;10:2215-2225.
[115] Munoz A,Rodriguez H P and Mujica A. Ground-state properties and high-pressure phase of beryllium chalcogenides BeSe,BeTe,and BeS. Phys Rev B 1996;54:11861-11864.
[116] Yang Q,Li G W and Manna K et al. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv Mater 2020;doi:10.1002/adma.201908518.
[117] Zhang R W,Zhang Z Y and Liu CC et al. Nodal line spin-gapless semimetals and high-quality candidate materials. Phys Rev Lett 2020;124:016402.
[118] Tang M Y,Shen H M and Sun Q. Two-dimensional Fe-hexaaminobenzene metal-organic frameworks as promising CO2 catalysts with high activity and selectivity. J Phys Chem C 2019;123:26460-26466.
[119] He Y,Yan D and Ng L R et al. Topological metal and noncentrosymmetric superconductor alpha-BiPd as an efficient candidate for the hydrogen evolution reaction. Mater Chem Front 2019;3:2184-2189.
[120] Li G W,Fu C G and Shi W J et al. Dirac nodal arc semimetal PtSn4:an ideal platform for understanding surface properties and catalysis for hydrogen evolution. Angew Chew Int Ed 2019;58:13107-13112.
[121] Li L L,Yang L and Wang X J et al. Immobilizing copper-supported graphene with surface hydrogenation or hydroxylation:a first-principle study. Chem Phys 2019;523:183-190.
[122] Li L Q,Zeng J and Qin W et al. Tuning the hydrogen activation reactivity on topological insulator heterostructures. Nano Energy 2019;58:40-46.
[123] Hudie S M,Lee C P and Mathew R J et al. Phase-engineered Weyl semi-metallic MoxW1-xTe2 nanosheets as a highly efficient electrocatalyst for dye-sensitized solar cells. Solar RRL 2019;3:1800314.
[124] Tang M Y,Shen H M and Qie Y et al. Edge-state-enhanced CO2 electroreduction on topological nodal-line semimetal Cu2Si nanoribbons. J Phys Chem 2019;123:2837-2842.
[125] Zhang R W,Liu C C and Ma D S et al. Nodal-line semimetal states in the positive-electrode material of a lead-acid battery:Lead dioxide family and its derivatives. Phys Rev B 2018;98:035144.
[126] Thrower Peter A. Chemistry & Physics of Carbon (Vol.5 CRC Press Publisher,1993)
[127] Xie Q,Wang L and Li J X et al. General principles to high-throughput constructing two-dimensional carbon allotropes. Chin Phys B 2020;29:037306.
[128] Liu G,Chen X Q,Liu B L et al. Six-membered-ring inorganic materials:definition and prospects. Natl. Sci. Rev. 2021;8:nwaa248.
作者简介
成会明,中国科学院院士、发展中国家科学院院士,国际知名碳材料科学家。现任中科院金属研究所研究员、清华-伯克利深圳学院教授。1984年本科毕业于湖南大学,1992年在中国科学院金属研究所获得工学博士学位(与日本联合培养),曾于1998—2003年担任中国科学院金属研究所副所长,2003—2012年担任中国科学院金属研究所党委书记兼副所长(常务)。2013年当选为中国科学院院士,2014年当选为发展中国家科学院院士。曾任国际刊物Carbon副主编、《新型炭材料》主编,现任国际刊物Energy Storage Materials(《储能材料》)创刊主编、Science China Materials(《中国科学-材料》)副主编。曾任亚洲碳协会主席、两届碳国际会议共同主席,受邀作国际报告190余次。曾获得国家自然科学二等奖(2006年、2017年)、国防科技进步二等奖、何梁何利科技进步奖、美国碳学会Pettinos 奖、德国Felcht奖、桥口隆吉基金奖、辽宁省自然科学奖一等奖(4项)、美国化学会ACS Nano Lectureship奖等。已发表学术论文750余篇,被SCI引用92000余次,是化学与材料科学两个领域的高被引科学家。
陈星秋,中国科学院金属研究所研究员,沈阳材料科学国家研究中心材料计算与设计研究部主任。东北大学钢铁冶金专业毕业后,在维也纳大学获博士学位和美国橡树岭国家实验室从事博士后研究,2010年加入中国科学院金属研究所。主要从事合金计算设计及相应的模型、方法和应用探索研究,主要在先进结构材料和拓扑量子材料方向开展工作。在Phys. Rev. Lett.等期刊发表主要论文百余篇,被SCI他引6000余次。承担了国家杰出青年科学基金、科技部等项目十余项,入选中科院“百人计划”和国家“万人计划”科技创新领军人才。任5个SCI期刊编委,是Journal of Materials Science & Technology期刊学科编辑,中国材料学会计算材料学分会副秘书长。
刘岗,现为中国科学院金属研究所副所长、研究员。2003年毕业于吉林大学材料物理专业,2009年在中科院金属所获材料学博士学位,随后留所工作至今。一直致力于太阳能光催化材料的研究,发表论文150余篇,所发表论文被SCI引用2.3万余次,获授权专利18项。承担了包括国家杰出青年科学基金及优秀青年科学基金、973计划项目课题、英国皇家学会-牛顿高级学者基金在内的项目十余项。入选国家“万人计划”首批青年拔尖人才和第三批科技创新领军人才、教育部“长江学者奖励计划”青年学者、科睿唯安2017—2019年全球高被引学者等。曾获包括中国青年科技奖、辽宁省自然科学奖一等奖、中国化学会青年化学奖、全国百篇优秀博士学位论文奖等十余项学术奖励与荣誉。任中国材料研究学会青年工作委员会副主任和Journal of Materials Science & Technology期刊学科编辑。
刘碧录,清华大学-伯克利深圳学院副教授、博导。于2006年7月本科毕业于中国科学技术大学材料化学专业,于2012年1月博士毕业于中科院金属研究所材料学专业。2012年5月至2016年5月期间,在美国南加州大学电子工程系先后担任博士后、研究助理教授,自2016年6月起加入清华大学-伯克利深圳学院低维材料与器件实验室。主要研究方向是二维材料的可控制备及其在电子、光电和能源器件方面的应用。迄今共发表学术论文100余篇,论文被引用10800余次。获得国家基金委优秀青年科学基金(2017年)、中组部“青年千人计划”(2016年)、清华大学“学术新人奖”等荣誉与奖励;担任Science and Technology of Advanced Materials和Nano Select杂志的Associate Editor,被科学出版社聘为《低维材料与器件》丛书编委(2016年)等。
任文才,中国科学院金属研究所研究员,国家杰出青年科学基金获得者(结题特优)。主要从事石墨烯等二维材料研究,在其制备科学和技术、物性研究及光电、膜技术、储能等应用方面取得了系统性创新成果。在Science、Nature Materials等期刊发表主要论文160多篇,被SCI他引25000多次。入选科睿唯安公布的全球高被引科学家。获授权发明专利60多项(含6项国际专利),8项已产业化,成立两家高新技术企业。曾获国家自然科学二等奖(2017年、2006年)、何梁何利基金科学与技术创新奖、辽宁省自然科学一等奖、中国青年科技奖、中国科学院青年科学家奖等奖励,并入选“万人计划”科技创新领军人才。