- 数据产品经理宝典:大数据时代如何创造卓越产品
- 李阳
- 3062字
- 2020-08-27 18:27:34
前言
数据产品的发展已经变得不容忽视。从简单的报表,到各种可视化工具,再到人们通过各种模型来实现针对每一位用户的个性化服务,这些领域都有数据产品的影子。
数据产品的关注点是什么呢?或者说,当面临多种方案的时候,什么才能指导我们做出最终的选择呢?如果要找出本书“一以贯之”的核心词,那就是“效率”。这几乎是商业领域做数据产品的全部关注点,甚至是商业的全部关注点。产品运营关注运营的效率,业务发展关注发展的效率。此外,推广有推广的效率,投资有投资的效率,盈利有盈利的效率……
而数据产品关注的是数据应用的效率,也就是各种使用数据的场景是否足够高效、是否存在不必要的浪费、是否存在不合理的设计、是否还有提升空间等。可以说,在业务越来越依赖于数据的今天,数据应用的效率已经成为业务发展效率的重要组成部分。因此,数据产品不是“冷漠”的辅助性技术工具,不是业务“心脏里的支架”,它应当是业务的“心脏”。
肩负这样的“重任”,作为数据产品经理,除了发挥想象力,在实现效率提升的过程中也有一些具体的方向需要思考。有“科学管理之父”之称的弗雷德里克·泰勒(Frederick Taylor)就提出了“精细化、数量化、标准化”的理论来提升效率。
首先,将所有要做的事情拆分开,拆分到每一个步骤、每一个处理过程。然后,对每个步骤的执行过程进行数量化。衡量每个过程的不同实现方式的效率,衡量投入的时间、可能存在的失误等风险,最终选出每个过程最高效的完成方式。最后,将每个过程的“最佳实践”推广成为标准,让大家都来参照执行。
在本书的正文部分,笔者提供了大量的“分而治之”的、精细化的思路,既包括对业务目标的拆解、对业务发展诉求的拆解,又包括对用户、市场和需求的拆解。这其中涉及大家经常提到的“指标拆解”“用户分群”“系统模块化”等。
针对拆解后的各个方面,笔者将统一给出衡量投入和产出的思考方式。其中,包括针对不同的产品生命周期、不同的用户生命周期、不同的产品类型和行业等因素,找到不同场景下的关注点和衡量标准,并据此制定不同的应对策略。
除了这些比较“零散”的具体分析,笔者介绍了许多经过很长时间仍然为人们所津津乐道的模型。其中既包括管理学领域的,又包括营销学领域的,当然也少不了来自互联网领域的各种分析模型。这些模型提供了标准化的分析问题的方法,并且针对各自适用的问题给出了标准化的解决方案。
大家在这一系列思维方式和模型的指导下,能够快速发现现有数据应用过程中的效率问题,并不断突破这些效率瓶颈,实现整体提升数据应用效率的目的。比如,通过整合数据存储和加工的流程,来减少重复建设和浪费。大家或许经常听到“整合”这个词,分析能力在整合、数据在整合、技术基础设施在整合,乃至整个企业或团队都在整合。
当然,大家也不能机械地套用理论,还需要结合实际情况做出权衡和匹配。比如,数据平台的长期发展与短期诉求的权衡,通用内容与定制内容的权衡;数据应用与基础数据的匹配,业务诉求与技术能力的匹配等。在本书中,笔者也会提及做出这些权衡和匹配的依据,包括成本投入、价值产出和其他影响效率的因素。
“数据产品经理”这个职位在不同的企业或团队中也有不同的定位,有的偏向数据分析,有的偏向工具平台搭建。本书尽量覆盖这两种类型的不同要求,为想要成为数据产品经理的朋友呈现一个“以数据产品驱动业务”的全景。另外也借此提醒希望成为数据产品经理的朋友,应优先了解该职位的定位及方向,再结合自己的兴趣,判断是否接受这个职位。
目标读者
本书的目标读者可以分为四类。
一、目前已经成为数据产品经理,并已经具备一些经验的人群
首先,祝贺你已经成为数据产品经理中的一员!
本书内容对于已经成为数据产品经理的人群来说,是他们熟悉的内容。作为数据产品经理,能够直接在日常工作中感受到本书中提到的各种问题和解决方案在实际中的应用。衷心希望笔者对解决方案的思考能够帮助大家在工作中取得新的突破。
二、对业务层面较为熟悉、希望成为数据产品经理的人群
那些具备分析师、运营及商科背景的人群,自身对业务层面发生的事情已经非常了解。但这几类角色对技术层面的了解又是不同的。在他们当中,最有可能接近技术层面的角色,应当是分析师。分析师更有可能接触到偏底层的数据表,以及SQL和数据加工过程等内容。当然,这与不同企业内的分工方式有关。有些企业也确实存在更偏向分析思路和弱化分析工具的“分析师”岗位。
相比之下,具备运营背景的人对用户和市场的感知更偏向感性和人性的层面,更了解用户的思维方式和核心诉求,而具备商科背景的人则对业务本身更了解,对业务的运作方式、未来发展方向和商业目标的达成等方面会有更充分的知识储备和掌控能力。
以上三种角色的突出优势,在数据产品的设计和搭建过程中会发挥各自不同的作用。这三种角色,对本书中的业务和分析相关内容已经非常熟悉了,因此可以重点阅读第一篇的两章内容,以及从第5章开始的偏向技术方向的内容。这些可能是大家在搭建数据产品的过程中遇到的主要瓶颈。
三、对技术层面较为熟悉、希望成为数据产品经理的人群
对于工程师及具备理工科背景的人群来说,那些逻辑性较强的内容已经不在话下。特别是对于一些有实战经验的工程师来说,系统中各类功能的具体实现方式已经烂熟于心。即使是专门面向数据的数据产品,除了一些数据处理中的“新情况”,其他部分已经不需要过多讨论了。
不过,由于数据产品不仅是一个“纯技术”型的产品,还是一种支撑业务、赋能业务、实现“Guide Business”的智能系统,因此对于具备理工科背景的人群来说,其中的业务分析思路和商业逻辑部分可能是相对欠缺的,大家可以重点阅读第一篇的两章内容,并重点了解第二篇中各章节的内容。
四、其他对数据感兴趣、希望成为数据产品经理的人群
如果大家对数据产品感兴趣,那么不管擅长什么,都欢迎大家更多地了解数据产品及其背后的商业和技术部分。相信这会为大家施展自己的才华提供足够的空间。
目录结构
本书共分为三篇。
第一篇,主要讲解数据产品自身的建设目的和可能遇到的问题。
第1章,主要介绍数据产品重点关注的效率问题,以及效率问题是如何产生的。
第2章,主要介绍搭建数据产品的核心目标,并通过理解业务和理解技术两个方面来辅助搭建出优秀的数据产品。
第二篇,主要讲解业务层面的问题,从业务自身的逻辑到业务与技术系统之间的关系。
第3章,借助“投资”思维中的投入和产出概念,分别分析了几种常见的业务的商业模式,并介绍了几种常用的分析业务的管理模型和营销组合。
第4章,主要讲解业务的维系与发展等方面对数据的诉求,包括用户市场方面的研究、业务及产品自身形态的研究,以及通过与数据产品深度结合实现业务综合能力升级的过程。
第5章,主要讲解从数据角度看到的“业务”,包括用数据抽象来自用户市场的需求,用数据抽象业务自身的逻辑,以及业务的“数据世界观”和几种针对行业的通用数据仓库模型。
第三篇,主要讲解技术层面的问题,针对技术系统对业务的支撑,介绍了几种经典的大数据技术框架。
第6章,主要讲解技术系统对业务的支撑方式,以及业务中的数据形态和业务运转中可能遇到的数据问题。
第7章,主要讲解在架构层面两种经典的产品技术架构,并讲解程序代码层面的“做事思路”,以及从技术层面进行产品模块化的方法。
第8章,主要讲解大数据技术框架在设计时常见的关注点,这些关注点也是大数据领域常见的核心问题,同时还介绍了几种常见的大数据技术框架及其处理数据的基本逻辑。
【读者服务】
微信扫码回复:(38627)
● 获取博文视点学院20元付费内容抵扣券
● 获取免费增值资源
● 获取精选书单推荐
● 加入读者交流群,与更多读者互动