- 网站数据挖掘与分析:系统方法与商业实践
- 宋天龙
- 1377字
- 2023-03-13 16:48:29
2.1.2 数据价值的4种常见定位
在日常工作中和数据产出中,数据价值的定位分为4种:数据管理、数据日常报表、数据专项挖掘分析、数据驱动。几乎所有企业的数据价值定位都脱离不了这4种,差异只是不同定位间的权重不同而已。
1.数据管理
数据管理工作包括:数据配置管理、数据权限管理、用户权限管理、数据导入管理、数据导出管理。
·数据配置管理。数据存储、安全、排除设置,并发控制、进程控制、结构控制等。
·数据权限管理。数据保存、新增、删除、更新、备份、合并、拆分、导出、打印等。
·用户权限管理。用户新增、删除、重置、过期设置、共享等。
·数据导入管理。数据导入格式、时间、条件、规则、异常处理、记录数、来源等。
·数据导出管理。数据导出格式、时间、条件、规则、记录数、加密、位置等。
2.数据日常报表
大多数的数据日常报表需要通过技术开发形成报表产品体系,以提供对日常业务的支持。当具有突发性事件或活动时,需要人工整理和汇总报表。完成日常报表后,通过自动发送邮件或短信、在线访问、离线客户端访问等形成接入数据。
根据数据日常报表提供频率和周期的不同,报表可分为日报、周报、月报、季报、半年报和年报。报表的内容因公司需求而异,但基本框架是统计周期内企业各个运营环节KPI陈列、对比和简单分析,目的是通过周期性数据进行业务诊断,发现业务效果的趋势和异常点,为业务的优化执行提供基本支持。
根据数据日常报表支持对象在企业内部分工的不同,日常报表可分为针对决策层的报表和针对执行层的报表。针对决策层的报表侧重于宏观的、整体的效果汇总和结果把脉,借助对比、趋势和主要维度下钻等方式进行初步分析并定位结论和问题点;针对执行层的报表侧重于微观的、个体的效果分析,各业务执行层只针对各自业务维度进行分析,并提供实际可行的操作型建议。
注意
对于数据指标的设定,既要包括公司核心结果指标如利润,又要包括各个业务节点的过程类或间接辅助类指标,以便更全面地评估和定性整体及各业务线的工作结果。
3.数据专项挖掘分析
数据专项挖掘分析是指针对某一特定课题或需求,采用专项分析或长期课题分析的形式对数据进行深入挖掘和分析,以提炼出相应结果或方法论供业务参考或使用。
数据专项挖掘分析是数据发挥价值的重要手段,更是数据辅助支持作用的关键,大多数公司的数据工作意义都来源于此。
为了提高数据工作的针对性,数据专项挖掘通常按业务模块划分,常见的数据专项挖掘分析模块包括市场分析、营销分析、网站分析(运营分析)、会员分析、用户体验分析、销售分析、移动分析、O2O分析等。不同分析模块课题依业务需求而定。
4.数据驱动
数据驱动是真正让数据从辅助角色转变为决定角色的唯一方式,但数据驱动通常在其他数据支持体系建立并完善后才进行考虑。
第一,数据驱动需要成熟的数据方法论的支持,这些知识需要通过日常报表、专项挖掘分析等方式慢慢积累,即使外部引入的方法论也需要根据企业环境进行“定制开发”。
第二,数据驱动需要企业内部具有需求环境。数据需要的前期以辅助决策类为主,第一步是“看”数据的需求,即数据报表;第二步是“查”数据的需求,即通过专项挖掘输出数据价值;第三步才是“用”数据的需求,即让数据自己决定业务方向。没有前两步做铺垫,第三步无法实现。
第三,数据驱动需要较大的IT、人力、物力和财力投入,在数据工作前期,尤其在没有见到数据价值产出之前,企业盲目投入的风险性大。