1.3.2 工业大数据面临的挑战

不可否认,工业大数据已经成为增强我国工业制造转型发展的新动能,并且在智能化设计、智能化生产、网络化协同制造、智能化服务和个性化定制等领域成为新技术、新业态和新模式的核心要素。然而,随着全球化制造业格局的重新布局和企业内外部制造环境复杂性的日益加剧,工业大数据的应用面临诸多挑战。

1.工业大数据来源更加复杂

随着新一代信息技术与制造业相互融合的深度与广度的不断加剧,以智能制造为代表的各种新型制造模式相继出现,从而推动生产要素在人(人力资源)、机(虚拟信息系统)、物(生产物理系统)三元世界形成更加密切的合作与协同关系。在此背景下,工业大数据的来源更加复杂多样,多样性、多模态、高通量和强关联等特性进一步增强,对工业大数据的一体化管理提出了挑战。

2.工业大数据资源不丰富

总体上,我国工业企业的数据资源存量普遍不大,66%的企业数据总量都在20TB以下,还不到一个省级电信运营商日增数据量的1/10。此外,数据的价值密度普遍较低,有价值的数据非常稀缺,工业系统对数据有精准控制和高可靠性要求,大部分数据是在系统正常工作条件下采集到的,而具有利用价值的包含系统故障情形下的“坏”样本数据较难获得,还有一些工业场景要求捕获故障/异常瞬间的细微状况,才能还原和分析故障发生原因,这对数据采集、监测、存储提出了较高的要求。

3.工业大数据孤岛普遍存在

工业大数据跨域跨界的流通性是保证数据资源价值体现的重要基础。而目前,工业大数据的多源异构性使企业所收集到的数据资源较为独立和分散,尤其在企业横向的不同信息系统之间以及纵向的信息系统与操作系统之间普遍存在明显的数据壁垒,形成了众多的数据孤岛,严重影响了大数据资源在整个产业链的流通性,进而限制了工业大数据应用的深度和广度。

4.工业大数据资产管理滞后

工业领域追求确定性的分析结果,对数据分析的可靠性要求高,因而对数据质量的要求也就更高,低质量的数据会给企业带来10%~20%的损失。从信息化程度较高的金融、电信、互联网等行业的经验来看,开展数据资产管理是确保数据质量的必要手段。而调查结果显示,我国只有不到1/3的工业企业开展了数据治理,51%的企业仍在使用文档或更原始的方式进行数据管理。

5.工业大数据安全管理薄弱

工业大数据在给企业带来巨大经济利益的同时,其本身所存在的安全问题也让企业面临着巨大的风险。近年来,工业数据平台被曝出的漏洞日益增多,尤其是工业控制系统内的安全漏洞层出不穷,且大量集中在装备制造、交通、能源等重要领域,严重威胁国家信息基础设施安全。从全球发展趋势来看,工业互联网和工业数据日益成为黑客攻击的重点目标,包括克莱斯勒、福特、特斯拉等全球100家汽车企业的超过4 7000个机密文件遭遇外泄。

6.工业大数据应用不深入

工业大数据分析应用还普遍处于浅层阶段。40%的应用集中在产品或设备数据的检测、诊断与预测性分析领域,而在涉及数据范围更广、分析复杂度更高的经营管理优化和资源匹配协同等场景中,现有数据分析能力还无法满足应用要求,需要进一步提高数据分析技术创新能力提升工业大数据对企业整体生态系统的价值创造水平。