1.3.3 半监督学习

半监督学习(Semi-supervised Learning)是一种介于监督和无监督学习之间的学习方式,通过使用带标签数据及大量不带标签的数据进行模型学习。在监督学习中,样本的类别标签是已知的,对于无监督学习,样本是无标签的。实际上,有标签的样本是极少量的,绝大部分数据都是没有标签的,这是因为人工标记样本的成本很高,导致有标签的数据十分稀少。与此相应,不带标签的样本更容易获得。使用半监督学习,只需要少量带标签的数据,同时又能够带来较高的准确性,因此,在今天的大数据时代,半监督学习逐渐受到更多的关注。