- MLOps实战:机器学习模型的开发、部署与应用
- (英)马克·特雷维尔等
- 1382字
- 2022-08-12 16:15:30
前言
在机器学习(ML)的发展历史中,我们已经到达了一个转折点,该技术已经从理论和学术领域进入了“现实世界”——为全世界的人提供各种服务和产品的业务。虽然这种转变令人兴奋,但同时也充满挑战,因为这将机器学习模型的复杂性与现代企业的复杂性结合在一起。
随着各种企业从尝试机器学习到在生产环境中扩展机器学习,其中的困难之一便是维护。企业如何从仅管理单个模型转变为管理几十乃至成百上千个模型呢?这不仅仅是MLOps发挥作用的地方,也是体现上述技术和商业方面复杂性的地方。本书将向读者介绍当前使用MLOps面临的挑战,同时还为开发MLOps功能提供实用的见解和解决方案。
本书适用人群
我们专门为分析人员和IT运营团队经理(即直接面对在生产中扩展机器学习任务的人员)编写了这本书。鉴于MLOps是一个新领域,我们编写了本书,作为创建一个成功的MLOps环境的指南,涵盖了从组织到技术方面的挑战。
本书结构
本书分为三个部分。第一部分(第1~3章)是对MLOps主题的介绍,深入探讨它如何(以及为何)发展成一门学科、需要谁参与才能成功执行MLOps以及需要哪些组成部分。
第二部分(第4~8章)大致介绍了机器学习模型的生命周期,其中包括有关模型开发、生产准备、生产部署、监控和治理的章节。这些章节不仅包括一般的注意事项,还包括MLOps生命周期每个阶段的注意事项,并提供与第3章中所涉及主题相关的更多详细信息。
最后一部分(第9~11章)提供了MLOps在当今公司中的具体示例,以便读者了解MLOps在实践中的设置和含义。尽管公司名称是虚构的,但这些故事是以现实中的公司在MLOps和大规模模型管理方面的经验为基础的。
排版约定
本书中使用以下排版约定:
斜体(Italic)
表示新的术语、URL、电子邮件地址、文件名和文件扩展名。
等宽字体(Constant width
)
用于程序清单,以及段落中的程序元素,例如变量名、函数名、数据库、数据类型、环境变量、语句以及关键字。
等宽粗体(Constant width bold
)
表示应由用户直接输入的命令或其他文本。
等宽斜体(Constant width italic
)
表示应由用户提供的值或由上下文确定的值替换的文本。
O'Reilly在线学习平台(O'Reilly Online Learning)
40多年来,O'Reilly Media致力于提供技术和商业培训、知识和卓越见解,来帮助众多公司取得成功。
我们拥有独一无二的专家和革新者组成的庞大网络,他们通过图书、文章、会议和我们的在线学习平台分享他们的知识和经验。O'Reilly的在线学习平台允许你按需访问现场培训课程、深入的学习路径、交互式编程环境,以及O'Reilly和200多家其他出版商提供的大量文本和视频资源。有关的更多信息,请访问http://oreilly.com。
如何联系我们
对于本书,如果有任何意见或疑问,请按照以下地址联系本书出版商。
美国:
O'Reilly Media,Inc.
1005 Gravenstein Highway North
Sebastopol,CA 95472
中国:
北京市西城区西直门南大街2号成铭大厦C座807室(100035)
奥莱利技术咨询(北京)有限公司
要询问技术问题或对本书提出建议,请发送电子邮件至errata@oreilly.com.cn。
本书配套网站https://oreil.ly/intro-mlops上列出了勘误表、示例以及其他信息。
关于书籍、课程、会议和新闻的更多信息,请访问我们的网站http://www.oreilly.com。
我们在Facebook上的地址:http://facebook.com/oreilly
我们在Twitter上的地址:http://twitter.com/oreillymedia
我们在YouTube上的地址:http://youtube.com/oreillymedia
致谢
我们要感谢整个Dataiku团队,感谢他们从构思到完成对本书出版的支持。这是真正的团队努力,就像我们在Dataiku做的大多数事情一样,植根于无数人和团队之间的基本合作。
感谢那些从一开始就与O'Reilly一起支持我们的愿景的人、那些帮助我们写作和编辑的人、那些提供诚实反馈的人(即使这意味着更多的写作、重写、再重写)、那些在内部当啦啦队队员的人,当然,还有那些帮助我们将本书推向世界的人。