内容简介

本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。

本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、人脸识别、语音识别、生成对抗网络和AlphaGo等应用场景归入不同的类别,并分别对其原理进行了概括性的讲解。

本书适合有一定深度学习或目标检测学习基础的学生、研究者、从业者阅读。