内容简介

近年来机器学习是一个热门的技术方向,但机器学习本身并不是一门新兴学科,而是多门成熟学科(微积分、统计学与概率论、线性代数等)的集合。其知识体系结构庞大而复杂,为了使读者朋友能够把握机器学习的清晰的脉络,本书尽可能从整体上对机器学习的知识架构进行整理,并以Sklearn和Keras等机器学习框架对涉及的相关理论概念进行代码实现,使理论与实践相结合。

本书分为4个部分:第1章至第3章主要介绍机器学习的概念、开发环境的搭建及模型开发的基本流程等;第4章至第7章涵盖回归、分类、聚类、降维的实现原理,以及机器学习框架Sklearn的具体实现与应用;第8章至第12章主要阐述深度学习,如卷积神经网络、生成性对抗网络、循环神经网络的实现原理,以及深度学习框架Keras的具体实现与应用;第13章简单介绍机器学习岗位的入职技巧。

本书可作为机器学习入门者、对机器学习感兴趣的群体和相关岗位求职者的参考用书。