1.6 流式计算框架对比

Storm是比较早的流式计算框架,后来又出现了Spark Streaming和Trident,现在又出现了Flink这种优秀的实时计算框架,那么这几种计算框架到底有什么区别呢?下面我们来详细分析一下,如表1.1所示。

表1.1 流式计算框架对比

在这里对这几种框架进行对比。

  • 模型:Storm和Flink是真正的一条一条处理数据;而Trident(Storm的封装框架)和Spark Streaming其实都是小批处理,一次处理一批数据(小批量)。
  • API:Storm和Trident都使用基础API进行开发,比如实现一个简单的sum求和操作;而Spark Streaming和Flink中都提供封装后的高阶函数,可以直接拿来使用,这样就比较方便了。
  • 保证次数:在数据处理方面,Storm可以实现至少处理一次,但不能保证仅处理一次,这样就会导致数据重复处理问题,所以针对计数类的需求,可能会产生一些误差;Trident通过事务可以保证对数据实现仅一次的处理,Spark Streaming和Flink也是如此。
  • 容错机制:Storm和Trident可以通过ACK机制实现数据的容错机制,而Spark Streaming和Flink可以通过CheckPoint机制实现容错机制。
  • 状态管理:Storm中没有实现状态管理,Spark Streaming实现了基于DStream的状态管理,而Trident和Flink实现了基于操作的状态管理。
  • 延时:表示数据处理的延时情况,因此Storm和Flink接收到一条数据就处理一条数据,其数据处理的延时性是很低的;而Trident和Spark Streaming都是小型批处理,它们数据处理的延时性相对会偏高。
  • 吞吐量:Storm的吞吐量其实也不低,只是相对于其他几个框架而言较低;Trident属于中等;而Spark Streaming和Flink的吞吐量是比较高的。

官网中Flink和Storm的吞吐量对比如图1.4所示。

图1.4 Flink和Storm的吞吐量对比