- 《架构师》2017年4月
- InfoQ中文站
- 2284字
- 2020-06-26 06:05:03
一些问题
1. 大公司在数据和人才上有巨大优势,那么创业公司的机会在哪里?投资者可以关注哪种规模的创新?
• 在语音识别、人脸识别上,小公司非常难与大公司竞争,除非有意料之外的技术突破。同时,也有很多小垂直领域适合创业公司,比如医疗影像。有一些疾病的病例不多,如果有一千张影像,也许就涵盖了所有所需的数据了,一些垂直领域需要的数据量也不大。
• 另外,AI的机遇非常多,大公司会放弃很多的小的垂直市场,因为精力有限,大的机会还研究不过来。
2. AI在发明创造上,有哪些进展?
• 还很早期。AI可以作曲,但这很主观。20年前的技术做出来的曲子有人喜欢,有人不喜欢。有些项目用AI制作图片特效,用特效模仿某画家作品,这些都是小而有趣的领域。现在还看不到有什么技术路线能发明复杂的系统。
3. 如果摩尔定律不再成立,对AI的扩展性有什么影响?
• 一些高性能计算公司的硬件路线图显示,摩尔定律在单芯片上不再那么有效,但神经网络、深度学习所需的计算类型在未来几年仍然能很好地扩展。SIMD(单指令多数据)让并行化处理负载非常容易。神经网络很容易并行化,加速计算的空间还很大。
• AI面对的诸多问题中,许多问题的瓶颈在于数据,也有很多的瓶颈在于计算速度——能便宜地处理数据的速度赶不上获得数据的速度。所以高性能计算的路线图应该包括这方面。
4. 算法是AI里的特殊作料。是否应通过知识产权保护,还是绕过这个问题去设计产品?对机器学习的研究者,是否有和AI产品经理-工程师那样类似的流程或良性循环,来实现突破或改善研究流程?
• 知识产权的问题比较难讲。有些公司申请了大量专利,但是是否真能带来实质性的保护?所以我们往往从如何从战略上思考细节,比如让数据保护自己。
• 研究机构更偏好新鲜、抢眼球的东西,来发表论文。训练新研究者的办法通常是读很多论文。而大家常常忽视重复论文里的试验的重要性。不一定要把精力大量用于发明新东西,而花时间重复别人的发布结果也是很好的培训方法。和培训博士生一样:去学习和理解别人的论文,重复别人的试验,争取获得类似的结果,很快你就能产生自己的想法去推动最新的科技。
5. 对希望从事机器人相关工作的机械工程学生,有哪些和AI、机器人相关的机会比较适合?
• 很多机械工程背景的人,在AI领域很成功。可以上一些计算机/AI课程,和AI领域的老师聊聊。一些垂直领域存在有趣的AI机器人的机会,比如精准农业。Blue River用计算机视觉来区分不同植物,比如不同品种卷心菜,选择留下哪些,除掉哪些,来提高产量。
• 中国也生产和销售很多社交和伴侣机器人,美国还没起怎么起步。
6. 让AI和人配合起来的前景如何?很多AI应用是基于AI自己,如果采用AI+人的混合方案?比如自动驾驶等?
• 没有统一的规则,应该跟实际情况有关。很多语音识别是为了让人类更高效,比如通过手机。对自动驾驶汽车,可能需要10-15秒来转换控制权,因为难让容易分神的人快速接手驾驶,很困难。这种情况下,由AI独立控制更安全。所以从使用者角度来讲,人类和AI混合的自动化比较困难。
7. 对在线教育而言,主要问题是动机,人们不愿意花那么多时间来学完整个课程。这是不是最大的挑战?其他还有什么挑战?
• AI对在线教育有帮助。个性化的辅导已经谈论了很长时间,Coursera用AI推荐个性化的课程,自动打分,在细节上确实有帮助。但在利用AI之前,教育的数字化还有很长的路要走。很多行业都有个规律:先有数据,再有AI,比如医疗,美国电子病历(EHR)的进展很大。随着电子病历的兴起,影像胶片变成数码图片,这些数字化产生了很多数据供AI使用,并产生价值。教育需要先经历数字化,这一阶段还有很多工作要做。
8. 百度如何用AI来管理自己的云上数据中心?比如IT运维管理的例子?
• 两年前,百度做了个项目,可以提前一天自动检测出硬件故障,特别是硬盘故障。这就可以事先拷贝、热插拔进行预防处理。还可以降低数据中心的用电量,负载均衡等,都是很多小细节的改善。
9. 能否举一些例子说明能通过仔细地建模和规划,用AI解决的复杂问题?对这些问题,人类可能需要进行长时间的思考。
• 亚马逊是个很好的例子。它知道我浏览过什么,读过什么,比我太太更了解。电脑对人们看过什么,点击过什么广告更了解,所以在广告方面做得非常好。对于有些任务,计算机可以处理的信息量远远超过人类,并根据规律建模,进行预测,这方面AI比人做得更好。
• 将AI融入人类工作的很大一部分,是将一块块的AI部分串成一个大系统。比如为了造自动驾驶汽车,要用相机拍摄的图像,雷达等,组成车前方的一幅图,再由监督学习估算和其他车的距离,以及和行人的距离,这只是两个重要的AI部件,还需要其他的部件来估计5秒后车的位置,行人的方向。还有一个部件来分析,根据行人车辆等不同对象的运动情况,我应该怎么走?然后还需要算方向盘的旋转程度,以此类推。
• 所以复杂的AI系统有很多小AI部件,工程人员要知道如何将这种超级学习能力融合到更大的系统里,来创造价值。
10. 产品经理和社会学家、律师等如何协调?比如自动驾驶汽车在撞人前,开发者和AI应从驾驶者,还是行人的角度考虑问题?这只是个法律问题,但也有很多类似情况。产品管理者和不同的功能部门的合作时,应该扮演什么角色?
• 这个问题的一个相似版本是“有轨电车”问题,会产生伦理矛盾。一个电车走到岔道口,继续往前会撞死5个人,你可以用扳手将电车扳到另一条轨道,撞死该轨道上的一个人,而你成为凶手,你扳吗?
• 除了在哲学课里,很少有谁在现实生活里遇到过这个问题,所以,它并不重要。自动驾驶的开发者没去讨论它。实际上,如果谁真正遇到了,可能之前已经犯了其他错误了。自动驾驶处理的问题更实际,和你自己开车一样。比如,对面有个白色的大车,是否能及时刹车?