第3章 TWINING PLANTS(2)
- The Movements and Habits of Climbing Plants
- Charles Darwin
- 902字
- 2016-03-02 16:31:52
The lower internode, when it ceased revolving, became upright and rigid; but as the whole shoot was left to grow unsupported, it became after a time bent into a nearly horizontal position, the uppermost and growing internodes still revolving at the extremity, but of course no longer round the old central point of the supporting stick.
From the changed position of the centre of gravity of the extremity, as it revolved, a slight and slow swaying movement was given to the long horizontally projecting shoot; and this movement I at first thought was a spontaneous one.As the shoot grew, it hung down more and more, whilst the growing and revolving extremity turned itself up more and more.
With the Hop we have seen that three internodes were at the same time revolving; and this was the case with most of the plants observed by me.With all, if in full health, two internodes revolved; so that by the time the lower one ceased to revolve, the one above was in full action, with a terminal internode just commencing to move.With Hoya carnosa, on the other hand, a depending shoot, without any developed leaves, 32 inches in length, and consisting of seven internodes (a minute terminal one, an inch in length, being counted), continually, but slowly, swayed from side to side in a semicircular course, with the extreme internodes making complete revolutions.This swaying movement was certainly due to the movement of the lower internodes, which, however, had not force sufficient to swing the whole shoot round the central supporting stick.The case of another Asclepiadaceous plant, viz., Ceropegia Gardnerii, is worth briefly giving.I allowed the top to grow out almost horizontally to the length of 31 inches; this now consisted of three long internodes, terminated by two short ones.The whole revolved in a course opposed to the sun (the reverse of that of the Hop), at rates between 5 hrs.
15 m.and 6 hrs.45 m.for each revolution.The extreme tip thus made a circle of above 5 feet (or 62 inches) in diameter and 16 feet in circumference, travelling at the rate of 32 or 33 inches per hour.
The weather being hot, the plant was allowed to stand on my study-table; and it was an interesting spectacle to watch the long shoot sweeping this grand circle, night and day, in search of some object round which to twine.
If we take hold of a growing sapling, we can of course bend it to all sides in succession, so as to make the tip describe a circle, like that performed by the summit of a spontaneously revolving plant.By this movement the sapling is not in the least twisted round its own axis.I mention this because if a black point be painted on the bark, on the side which is uppermost when the sapling is bent towards the holder's body, as the circle is described, the black point gradually turns round and sinks to the lower side, and comes up again when the circle is completed; and this gives the false appearance of twisting, which, in the case of spontaneously revolving plants, deceived me for a time.The appearance is the more deceitful because the axes of nearly all twining-plants are really twisted; and they are twisted in the same direction with the spontaneous revolving movement.To give an instance, the internode of the Hop of which the history has been recorded, was at first, as could be seen by the ridges on its surface, not in the least twisted; but when, after the 37th revolution, it had grown 9 inches long, and its revolving movement had ceased, it had become twisted three times round its own axis, in the line of the course of the sun; on the other hand, the common Convolvulus, which revolves in an opposite course to the Hop, becomes twisted in an opposite direction.
Hence it is not surprising that Hugo von Mohl (p.105, 108, &c.)thought that the twisting of the axis caused the revolving movement;but it is not possible that the twisting of the axis of the Hop three times should have caused thirty-seven revolutions.Moreover, the revolving movement commenced in the young internode before any twisting of its axis could be detected.The internodes of a young Siphomeris and Lecontea revolved during several days, but became twisted only once round their own axes.The best evidence, however, that the twisting does not cause the revolving movement is afforded by many leaf-climbing and tendril-bearing plants (as Pisum sativum, Echinocystis lobata, Bignonia capreolata, Eccremocarpus scaber, and with the leaf-climbers, Solanum jasminoides and various species of Clematis), of which the internodes are not twisted, but which, as we shall hereafter see, regularly perform revolving movements like those of true twining-plants.Moreover, according to Palm (pp.30, 95) and Mohl (p.149), and Leon, internodes may occasionally, and even not very rarely, be found which are twisted in an opposite direction to the other internodes on the same plant, and to the course of their revolutions; and this, according to Leon (p.356), is the case with all the internodes of a certain variety of Phaseolus multiflorus.
Internodes which have become twisted round their own axes, if they have not ceased to revolve, are still capable of twining round a support, as I have several times observed.