1.2 半导体基础

1.2.1 N型半导体和P型半导体

阶电子是指原子最外层的电子,决定物质的稳定性。阶电子少于8个的物质,其性质不稳定。例如,铁原子的阶电子为两个,因此铁器暴露在空气中容易生锈。

半导体是指4个阶电子的物质,导电能力介于导体和绝缘体之间,如硅和锗即是半导体。本征半导体是指高度提纯、晶体结构完整的半导体单晶体。在本征半导体里,某原子的任意一个阶电子被与其相邻原子所共有,这样就形成了半导体晶体中的“共价键”。四阶硅原子的共价键如图1.13所示。

自由电子是指原子受到外部温度、光照、电场或磁场等能量的作用而脱离共价键束缚而自由运动的阶电子,这个产生阶电子的过程称为激发。本征半导体的自由电子密度达到108~109/cm3。阶电子激发后成为自由电子,在原来的共价键中留下的一个空位称为空穴。带负电荷的自由电子和带正电荷的空穴,成为本征半导体的电子空穴对(如图1.14所示),统称为载流子。

图1.13 四阶硅原子的共价键

图1.14 电子空穴对

掺杂是指在本征半导体中掺入微量的特定杂质而不改变它的晶体结构,以获得性质可控的杂质半导体。在掺杂过程中,杂质原子替代本征原子,需要施放或接受电子而成为离子,这个过程称为杂质电离。杂质半导体是半导体器件的基础材料,比本征半导体的电阻率更小,具有以下特点:① 具有本征半导体的晶体结构;② 自由电子和空穴不平衡而形成大量的载流子;③ 室温具备导电能力。

杂质半导体分为N型半导体和P型半导体。图1.15所示的N型半导体的特点是:① 杂质比本征原子的阶电子多;② 自由电子为多数载流子;③ 杂质电离后成为正离子;④ 呈电中性。图1.16所示的P型半导体是以空穴为多数载流子(多子)、自由电子为少数载流子(少子)的杂质半导体。

图1.15 N型半导体

图1.16 P型半导体

1.2.2 PN结

在一个本征半导体的不同区域注入浓度各异的施主和受主杂质,施主浓度大于受主浓度的区域形成N型半导体,而受主浓度大于施主浓度的区域形成P型半导体,N型半导体和P型半导体两个区域之间能够形成一个特殊的电学性能的过渡区域,称之为PN结。PN结形成的过程如下。

  • 掺杂:同一半导体的两个区域掺杂为P型半导体和N型半导体。
  • 扩散运动:P区和N区的接触面形成多子的浓度梯度,进行相向的扩散运动。
  • 空间电荷区:多子扩散后,P区侧的电离受主形成了一个负电荷区,N区的电离施主形成了一个正电荷区,这样形成了一个空间电荷区,也就是一个空穴和电子几乎完全中和的耗尽层。
  • 内电场:耗尽层的N区正离子和P区负离子建立了一个内电场,形成一个势垒区。
  • 漂移运动:空间电荷区自建的内电场促使少子的漂移运动,且阻碍多子的扩散运动。
  • 动态平衡:多子的扩撒运动和少子的漂移运动达到动态平衡,形成平衡的PN结。

PN结分为对称PN结和非对称PN结两种,前者的P区和N区的杂质的掺杂浓度相等,耗尽层的受主离子和施主离子的宽度相等。非对称PN结的两个区的杂质的掺杂浓度不相等,P区和N区在耗尽层的离子宽度也不相等,如图1.17所示。

图1.17 PN结

PN结的正向偏置是指在一个平衡的PN结的P区连接一个外部直流电源的正极,N区连接电源的负极,它的电学特性如下。

  • 势垒区变窄:外电场削弱PN结的内电场,它的空间电荷数量减少同时势垒区变窄。
  • 扩散运动增强:多子的浓度梯度增大,促进多子的扩散运动,阻碍少子的漂移运动。
  • 扩散电流:PN结的结电流表现为P区和N区多子的扩散运动而形成的电流。
  • 非平衡少子:在外电场的作用下,载流子的扩散运动大于漂移运动,电子从N区扩散到P区,空穴从P区扩散到N区,形成各自的非平衡少子,电源的空穴或电子进入相应的区域复合相应的非平衡少子。
  • 电荷存储效应:非平衡少子在各自的区域形成一个浓度梯度,在远离PN结的区域,非平衡少子因全部复合而浓度趋于0;趋向PN结的少子浓度提高,在PN结边界的浓度最大,这就形成了少子在PN结边界的积累,形成了PN结正向偏置的电荷存储效应。

PN结的反向偏置是指在一个平衡的PN结的P区连接一个外部直流电源的负极,N区连接电源的正极,它的电学特性如下。

  • 势垒区变宽:外电场增强PN结的内电场,它的空间电荷数量增多同时势垒区变宽。
  • 漂移运动增强:势垒区变宽,促进少子的漂移运动,阻碍多子的扩散运动。
  • 漂移电流:PN结的反向饱和电流表现为P区和N区少子的漂移运动而形成的电流。
  • 少子抽取:在外电场的作用下,载流子的漂移运动大于扩散运动,电子从P区漂移到N区,电源的空穴进入N区复合N区的电子;空穴从N区漂移到P区,电源的电子进入P区复合相应的空穴。载流子的浓度从电源与半导体的接触面向PN结的边界趋向0,即空间电荷区的少子趋向电源与半导体的接触面,这就是PN结反向偏置的少子抽取作用。

PN结的正、反向偏置作用可表达为PN结的单向导电性,即PN结正向导通、反向截止。当PN结的正向偏置电压增大到某一值时,很小的偏置电压变化将引起PN结电流的巨大变化,这个正偏电压称为PN结的势垒电压UTO,又称阈值电压。不同的半导体材料,UTO不同,如硅的UTO为0.7V,而锗的UTO为0.3V。当PN结的反向偏置电压超过其反向击穿电压值UBR时,PN结的反向电流急剧增大,而结电压保持在PN结的反向击穿电压值左右。PN结的正/反向特性的I-U曲线(伏安特性)如图1.18所示。

当PN结的偏置电压发生变化时,势垒区和非平衡少子的浓度分布发生变化,PN结势垒区的电荷也随之变化,这就是PN结的电容效应。PN结中储存的空间电荷随外加电压的变化而改变产生的电容效应,称之为PN结的势垒电容。PN结中非平衡少子的浓度分布随外加电压的变化而改变产生的电容效应,称之为PN结的扩散电容。PN结的势垒电容和扩散电容之和,称为PN结的结电容。当PN结正偏时,正向电阻小,PN结的结电容以扩散电容为主。当PN结反偏时,正向电阻大,PN结电容为势垒电容。PN结的电容影响PN结的工作频率,尤其是高速的开关状态。逻辑半导体器件PN结的结电容一般为1pF,功率半导体器件的结电容可超过100pF。

图1.18 PN结的I-U曲线

当PN结的反向偏置电压增大到某一数值时,PN结的反向电流骤大的现象,称之为PN结的击穿。PN结的击穿分为雪崩击穿、隧道击穿和热击穿三种,具体描述如下。

(1)雪崩击穿:PN结反偏时,势垒区的电子和空穴受到强电场的作用,获得足够大的动能,与势垒区的晶格原子发生碰撞,使电子从共价键中脱离成为自由电子,同时产生空穴。这些电子空穴对在强电场的作用下,继续发生碰撞,PN结的载流子倍增。当反向电压达到某一数值后,载流子的倍增发生雪崩现象,载流子骤增,PN结的反向电流急剧增大,从而产生PN结的击穿效应,这种击穿效应称为PN结的雪崩击穿。

(2)隧道击穿:PN结反偏时,势垒区导带和价带的能隙变窄,大量的P区价带中的电子有一定的概率直接穿透能隙而到达N区的导带中,反向电流增大,这样的击穿效应称为PN结的隧道击穿,也称齐纳击穿。

(3)热击穿:PN结的热击穿与其结温相关,当PN结反偏时,反向电流所引起的结温上升,结温上升又导致反向电流和热损耗增加,如此恶性循环,直到PN结烧毁的击穿现象,称之为PN结的热击穿。

热击穿能够造成PN结发生不可逆的退化,这种现象称之为热奔。雪崩击穿和隧道击穿称之为PN结的电击穿,电击穿的PN结具有可逆的特性。

1.2.3 二极管

普通的半导体二极管由一个P型半导体和N型半导体形成的PN结组成,它的PN结电气符号如图1.19所示。二极管的阳极A与P型材料连接,阴极K与N型材料连接,通常在二极管的一端有一条色带用来指示负极。

图1.19 二极管

二极管的基本特性是单向导电性,与PN结有类似的伏安特性曲线。它有两个基本工作状态,即正向偏置状态和反向偏置状态。在二极管的A端加一个相对比K端高的电平,就认为二极管处于正向偏置状态。如果正向偏置电压大于PN结的阈值电压,那么二极管就会导通,有正向电流从器件的A端流向K端。这会在期间器件的AK两端产生一个电压降,一般小于1V。当二极管处于反向偏置状态时,AK两端为负电压,器件不会导通,但是有一个微弱的反向电流从K端流向A端,称为二极管的漏电流。如果二极管的反向偏置电压继续增大,器件会被击穿。

二极管的主要参数包括最大整流电流IF、反向工作峰值电压URM、反向峰值电流IR等。

(1)最大整流电流IF:指二极管长时间使用时,允许流过二极管的最大正向平均电流。例如,常用的1N4001-4007型锗二极管的额定正向工作电流为1A。

(2)反向工作峰值电压URM:指击穿二极管的反向电压,此时器件失去了单向导电能力。例如,1N4001二极管反向耐压为50V,1N4007反向耐压为1000V。

(3)反向峰值电流IR:指二极管在规定的温度和反向工作峰值电压作用下,流过二极管的反向电流。反向峰值电流越小,器件的单方向导电性能越好。反向峰值受温度影响大,随器件温度升高而增大。

(4)最大正向压降UF:指器件流过最大整流电流时的阳极和阴极两端的电压。

根据器件的用途,二极管的常用类型有信号二极管、硅整流二极管、稳压二极管、肖特基二极管和发光二极管等。

(1)信号二极管:广泛应用在各种电子电路中,用于检波、整流、限幅、调制、变容等。

(2)硅整流二极管:具有高速导通与截止的能力,主要用于功率转换电路中的高频整流或续流钳位。

(3)稳压二极管:又称齐纳二极管,在反向偏置状态,当反向偏置电压达到某一电压值时,器件的阻抗会突然下降。它在电路中主要作为参考电压或电压调整。

(4)肖特基二极管:它是多数载流子导电的器件,反向偏置的少数载流子存储效应微弱。因此该器件的正向压降小、反向恢复时间短、击穿电压低,常应用在低压、大电流、高速开关的领域。

(5)发光二极管:该器件在电子与空穴复合时能辐射出可见红、黄、绿等单色光,简称为LED。

将二极管作为理想的开关器件,器件的正向偏置阻抗为零,反向偏置阻抗无穷大,它的特性曲线如图1.20(a)所示。显然,理想二极管不需要功率消耗。在电路设计中,二极管的理想特性曲线可用来估算二极管电路的电流,该电流由电路电压和负载决定。

图1.20 二极管的特性曲线

将二极管作为准理想的开关器件,当器件的正向偏置电压超过阈值电压时,阻抗近似为零,否则器件的阻抗无穷大,它的特性曲线如图1.20(b)所示。在实际的电路设计中,往往应用二极管的准理想特性曲线。因为应用准理想特性曲线不仅能够估算二极管的电流,而且可以估算它的消耗功率,以此进行器件的散热设计。

图1.21 例1-9的电路图

例1-9 二极管VD与电阻R串联的电路如图1.21所示,二极管的型号为1N4001。

(1)当电源uS为直流12V时,估算电阻R的阻值。

(2)采用(1)中的电阻,当电源uS为幅值12V和频率50Hz的正弦波时,估算二极管VD的电流平均值、电流有效值和最大功耗。

(3)绘制(2)中的二极管VD的电压波形。

解:

首先查阅相关型号二极管的基本参数IFUFURMIR。经查阅,型号为1N4001的二极管的基本参数为

IF=1A;UF=1V;URM=50V;IR=5μA

(1)估算电阻R的阻值。二极管VD的正向最大电流IF为1A,显然流过电阻R的电流不能超过1A,即

整理上式,可得

如果认为VD是理想二极管,那么VD的管压降uVD为0,即有

根据题意,有

uS=12V;IF=1A

代入计算式,可求得

这样,估算的电阻R值为12Ω。

(2)计算二极管的电流与最大功耗。由于二极管的单向导电性,正弦电压源的正半波可以通过二极管VD。认为VD是一个理想的二极管,估算二极管的电流iVD

根据题意,有

uS=12sin314t

R=12Ω

因此

假设VD是理想的二极管,二极管的阈值UTO和管压降uVD都为0,即有

这样二极管VD的电流表达式为

运用例1-5求得的正弦半波的平均值和有效值,可得二极管VD的电流平均值Iave和有效值Irms的估算值。

估算二极管VD的功耗,必须考虑二极管的管压降uVD,那么VD的功耗pVD表达式为

即有

显然,二极管VD的最大功耗PVD,max为1W。

第一种方法,采用二极管VD的理想特性。

假设二极管VD的阈值电压和导通压降为0,反向完全截止。这样,二极管VD的正向电压为0,反向电压等于电源电压,如图1.22(a)所示。它的数学表达式为

第二种方法,采用二极管VD的准理想特性。

假设二极管VD的阈值电压和导通压降等于1V,反向完全截止。这样,二极管VD的正向电压为1V,反向电压等于电源电压,如图1.22(b)所示。它的数学表达式为

图1.22 例1-9中二极管VD的电压波形图