版权信息

书名:网站数据挖掘与分析:系统方法与商业实践

作者:宋天龙

出版社:机械工业出版社

出版时间:2015-02

ISBN:9787111490593

本书赞誉

宋天龙是中国新生代的网站数据分析界“大拿”的代表,其对网站数据分析的理解是行业中数一数二的。他把他对网站数据分析的阐释和领会一览无余地吐露在本书中,并分四篇深入浅出地讲述了从企业数据体系建设之初,到网站分析工具的选择与部署,再到实际案例分析,最后收尾于其对网站数据分析的升华与提高,尤其是引人入胜的第15章对网站数据分析的投入与产出的分析,更是充分展示了宋天龙对网站数据分析游刃有余的拿捏。据此,我推荐任何刚入门及所有对网站数据分析感兴趣的朋友来学习和阅读,如果可能,与宋天龙一起切磋和提高。

张姝 Webtrekk亚洲区市场总监

这是一本写网站数据分析的专业书,有思路,有分析方法,有分析工具讲解和案例剖析。推荐数据分析、网站运营等人士阅读。

黄成明 (@数据化管理)数据化管理的咨询顾问及培训师

很早就认识天龙,第一次正式认识是通过我的一篇博文,他的评论来源于有见地的实践。与其他网站数据书籍不同的是,本书既强调工具和技术,又重视意识和应用,尤其融入了很多大型企业的宝贵经验。他把统计学、数据挖掘、自动化应用等方法应用其中,这是对网站数据工作方法的延伸;同时,对于数据工作的完整认知和数据管理意识,更是丰富了网站数据工作的广度与深度。因此,这是一本不可多得的佳作。

宋星 阳狮锐奇(Publicis Groupe VivaKi)数据解决方案总经理

数据分析=技术+市场+战略,这就决定了数据分析在企业中的重要性,我们需要借助数据来指引决策,而不是随机拍脑袋!传统行业的决策过多依赖于管理者的眼光和洞察力,而数据分析人要做的事情,就是把这些眼光和洞察力转化为可量化的数字信息!同时数据的竞争在于数据采集的竞争,在于数据维度的竞争以及玩转数据的人,再好的数据没有优秀的数据人员进行经营及挖掘,其价值终究无法展现。推荐阅读天龙撰写的此书,本书很好地阐述了如何进行企业级数据运营及数据分析工作,对于准备了解及从事数据分析工作的人有非常大的帮助。

田学峰 萝卜教育网创始人

如何定位及发现数据中的价值是网站分析中最受关注的问题。宋天龙通过多年的从业经验给出了答案。本书从数据的认知到数据的应用,以丰富的案例由浅入深地讲解了数据在商业中的作用及价值。无论你是数据行业的新人,还是有一定实践经验的从业者,这都是一本不应该错过的好书。

王彦平 网站分析爱好者《网站分析实战》作者之一

对于每一位网站分析师来讲,这是本必须买和必须认真读的书。

第一次读本书时,就被书中宽广的知识视角和清晰的阐述所折服,这完全是源于作者极其丰富的实战经验,以及对产品和技术孜孜不倦的追求。

宫鑫 射手学院创始人

中国网站分析的圈子其实不大,我和天龙也一直相望于江湖。他从业时间很长,使用过各家主流的分析工具,亦有着从事大型电商数据管理工作的经验,实属不多见的实战派人才。天龙是一个严谨的网站分析工作者,正如他所理解的那样,在这个领域里很多人是一只翅膀的鸟儿,要么执着地偏向分析技术,要么急躁地追求数据价值。网站数据分析是一条漫长的路,它隶属于一个细分研究领域,却涉猎广博、变化极快。希望这本书能够带给你一个新的角度,从而帮助你站到一个新的高度。

王晓东 TrueMetrics创始人

互联网的发展日新月异,企业要想有所作为,必须打造完善的数据跟踪、分析和优化体系。网站数据分析区别于传统的业务分析,会涉及数据跟踪机制、数据分析建模层面,也区别于数据挖掘,会有数据与业务结合的层面。此书深入浅出地介绍了网站数据分析的原理和实际案例,是行业内不可多得的开山之作。无论是对于互联网数据分析相关从业人员,数据分析专业人员,还是管理者,本书都是不可多得的好书。优秀的人出优秀的书,强烈推荐!

胡力 Netconcepts深圳分公司总经理《流量的秘密(第3版)》审校

无论是互联网还是传统公司都越来越意识到数据资产和数据分析的重要性,但很多公司对如何利用数据创造价值和基于数据做决策存在一些疑惑。

本书作者基于自身的行业经验和理论,从数据的价值、如何收集数据,到如何形成数据决策和数据驱动的体系一层层地回答了企业线上营销和线上运营等维度的数据分析问题。无论是对职业的数据分析师、数据分析入门者,还是企业管理人员,本书都不失为既有理论深度又有较高实践性的优秀之作。

李俊 百度大数据部高级产品经理

前言

为什么要写这本书

随着中国商业精细化运营价值的凸显以及企业对数据价值认可度的提高,网站数据分析正变得炙手可热,尤其在互联网企业中,网站数据分析已经成为从业人员必备的一项职业技能。

但在对网站数据进行分析的过程中,我发现企业中普遍存在三类问题,本书就致力于帮助读者解决这三类问题。

第一类是数据工作者的认知问题。

纵观当前与网站数据相关的从业者,或多或少都会存在以下两种认知:第一种是技术论,这种观点的核心是关注数据部署和采集、数据工具、技术、模型的重要性而忽略了应用场景;第二种是业务论,这种观点只关注应用层面的业务问题,由于缺乏对数据前端处理的把握和专业技术、工具的支持,导致后期数据质量和应用都缺乏可靠依据,最终影响了数据价值的提炼及应用效果的提升。

以数据价值为导向的数据分析师应该具备以下素质,这也是贯穿本书的核心思想:

·一是立足于数据本身的追本溯源。数据分析师需要了解数据的整个工作链,从数据的产生、采集、存储、提取、挖掘、分析、展现到集成应用,并能在各个环节有独到的见解。

·二是着眼于数据应用价值的研究。研究数据如何能更智能化、可视化、自动化,以及如何更有价值地解决业务问题并带来业务价值的直接提升。

不得不说,技术是实现商业理解的必要保证。网站数据分析的传统方法是趋势、细分和转化,但仅有这些方法还不够,很多深层次的问题需要借助其他方法来实现,例如数据挖掘、统计学、人工智能、商业智能等。我从来不认为网站数据分析与数据工作是割裂的,它是数据工作的一部分,所有关于数据的工作方法都可以和网站数据结合使用。但可惜的是,当前将网站分析与其他数据工作方法结合起来的较少,因此,我在本书中用大量的篇幅介绍数据挖掘在网站分析中的应用案例。

第二类是数据价值的认知问题。

对于任何一个企业来说,数据工作都不是企业发展的必需条件,最起码在企业运作初期没有大量数据的情况下企业同样可以快速发展。这时我开始思考数据的价值到底是什么?数据到底能给企业带来什么?如果没有数据企业又会损失什么?归根结底,数据存在的意义是用来解决商业问题的,换句话说数据能给企业带来多少价值,以及这些价值是如何体现在企业的利润报表里面的。作为网站数据分析应该如何带动企业的业务成长,或者如何以单独的形态与业务结成依存关系最终实现自我价值。这些问题是需要讨论的。未来,数据的作用将主要着眼于基于数据驱动和系统智能工作机制,而辅助决策工作将成为数据的一个非主要应用。所以本书在案例篇中重点介绍了基于数据驱动的营销和运营应用,其目的便在于此。

第三类是如何从企业的角度做数据工作管理的问题。

作为初、中级分析师,主要工作职责是把数据本身或数据项目工作做好;但作为管理层的高级分析师或管理者,需要思考的问题不仅是如何完成工作,还包括如何建立企业数据架构、数据工作流程、数据应用体系、数据风险以及质量管理体系,这是站在企业的高度来思考数据的定位及布局的必经之路。

基于以上三类问题,我萌生了写本书的想法,目的是希望读者能够放开眼界,首先破除网站数据的局限性,其次破除数据的局限性,最终站在企业的角度思考问题。作为一本接地气的书,书中列举了大量案例并通过对每个案例的详细介绍来帮助读者进行案例式的学习,希望能带给读者一些新的理解、观念和应用思路,使其无论是在工作机会的选择上还是收入上都能获得较大的帮助。

读者对象

本书适合以下几类从业者阅读。

·对数据研究感兴趣的在职人员。无论你从事什么工作,如果你能够将数据的思路、价值和应用方法结合到你的工作实践中,一定会对你现有的工作有所帮助。数据化思维和工作能力已经成为每个在职人员的加分项。

·刚入数据行业的新人。如果你是一位刚入行的新人,一定希望能够有一本兼具实战和理论高度的书籍,从全局到局部的每个细节为你理清工作思路并明确职业成长方向。如果你要了解数据在企业内的价值、工作流程,同时想快速融入企业并得到领导的赏识,那么本书绝对适合你。

·已经具备一定实践经验的数据从业者。对于已经在数据方面工作1~3年的从业者,相信你们会面临一些瓶颈,并想要在原有数据思维的基础上获得更有效的工作方法和工作价值的提升。本书中丰富的应用案例可以帮助你拨开云雾见青天。

·已经具有丰富工作经验的数据从业者。当数据从业者工作3年或3年以上时,就已经有机会从执行层走向管理层了。机会总是留给有准备的人的,作为管理者如何从数据工作流程、制度、风险和绩效方向进行思考并开展工作呢?相信本书会给你满意的答案。

如何阅读本书

本书的正文内容分为四篇,按照数据工作的成长思路来撰写,每篇都对应着一个成长阶段。

认知篇,介绍网站数据分析在企业内的价值体现,以及如何建立个人的数据成长体系、企业数据职能架构与数据价值最大化的定位。本篇的目的是帮助读者快速了解企业内部的整体数据架构、网站数据分析所扮演的角色以及个人在企业中如何进行自我定位和发展。

基础篇,分别介绍了网站数据的采集和配置、网站分析工具的选择、网站数据整合的方法、数据监测与评估指标以及数据分析场景和方法。这些知识是进行数据分析的基本前提,其中的第7章和第8章直接以业务场景为切入点,这部分知识可直接应用到实际工作中。

案例篇,以与网站分析结合最为紧密的营销和网站运营为例,分别介绍了网站数据的辅助决策以及数据驱动的工作内容,通过十多个案例还原数据分析的实际场景,这些案例可以套用到实际工作中并直接发挥作用。

提高篇,从数据管理者和领导者的角度介绍数据风险、数据质量、数据投入与产出、数据流程与落地管理,这些都是作为数据管理者自我提升的必备知识。

除正文内容外,本书还提供了两个附录。

附录A是关于网站分析工具中三个典型工具的特性的具体介绍,包括Webtrekk(主要是Q3)和Adobe Analytics(主要是Sitecatalyst)的默认报表和指标,以及Universal Analytics的通用和自定义代码的部署示例。

附录B总结了关于网站数据工作的局限与发展,从网站数据的价值、认知和技术局限性来阐述其所面临的挑战,展望了未来数据发展的三个方向:整合化、智能化、可视化。

勘误和支持

由于作者的水平有限以及编写时间仓促,书中难免会出现一些错误或者不准确的地方,恳请读者批评指正。为此,作者特意创建一个QQ群以方便大家讨论与沟通(群号:127586352),读者可以将书中的错误发布到群中;如果你遇到任何问题,也可以访问http://www.searchmarketingart.com/并在“书籍讨论区”进行提问,我将尽量在线上为读者提供最满意的解答。书中的全部源文件除可以从该网站“书籍讨论区”下载外,还可以从华章网站(www.hzbook.com)下载,我会将相应的功能更新及时在该网站发布出来。如果你有更多的宝贵意见,还欢迎发送邮件至邮箱:beijingtl@gmail.com,期待能够得到大家的真诚反馈。

致谢

首先要感谢机械工业出版社华章公司的杨福川老师,是他鼓励我写这本书并给予了详细的思路和专业指导,其次感谢全程参与审核、校验等工作的姜影编辑以及其他支持本书出版的相关工作者。

感谢我的领导彭亮以及我的良师益友田学峰,是他们在我的职业生涯中给我非常多的启发和知识拓展的机会,我在工作过程中接触到的各个世界级的网站数据解决方案以及数据工作知识都是基于前辈们已有的宝贵经验。另外,在从网站数据到企业级数据的角色转变过程中,我的几个好朋友、好同事提供了许多帮助,在他们的共同努力下,我才能获得较多关于企业级数据价值的资料,在此对他们也表示感谢,他们是姜继浩、庞程程、吕兆星、赵光娟、郑传峰等。除此之外,还有很多一起奋斗过的小伙伴,如徐子东、陈林、郭靖等,在此就不一一列举了,同样感谢他们对我工作的支持。

感谢我的领导Webtrekk亚太区总监张姝,是她给了我更多学习世界级网站数字智能解决方案的机会并支持我撰写关于Webtrekk的相关内容。

最后感谢我的爸爸、妈妈将我培养成人,并教我正确做人、做事的方法!感谢我的夫人,是她在我写作本书期间默默打理着家里的一切事务,使我有精力、有时间完成本书的全部撰写工作。

谨以此书献给我最亲爱的家人,以及众多热爱数据工作并努力为之奋斗的朋友们!

宋天龙(Tony Song)

北京