深度学习:从基础到实践(全2册)在线阅读
会员

深度学习:从基础到实践(全2册)

(美)安德鲁·格拉斯纳
开会员,本书免费读 >

计算机网络计算机理论、基础知识57万字

更新时间:2022-12-20 18:35:35 最新章节:29.3 库的内建数据集

立即阅读
加书架
下载
听书

书籍简介

本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的scikit-learn库和深度学习的Keras库(这两种库均基于Python语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。
品牌:人邮图书
译者:罗家佳
上架时间:2022-12-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

(美)安德鲁·格拉斯纳
主页

同类热门书

最新上架

  • 会员
    本书源于斯坦福大学的相关课程,主要介绍不确定状态下的决策算法,涵盖基本的数学问题和求解算法。本书共分为五个部分:首先解决在单个时间点上简单决策的不确定性和目标的推理问题;然后介绍随机环境中的序列决策问题;接着讨论模型不确定性,包括基于模型的方法和无模型的方法;之后讨论状态不确定性,包括精确信念状态规划、离线信念状态规划、在线信念状态规划等;最后讨论多智能体系统,涉及多智能体推理和协作智能体等。本书
    (美)米凯尔·J.科申德弗 (美)蒂姆·A.惠勒 (美)凯尔·H.雷计算机25.7万字