
会员
树莓派创客:手把手教你搭建机器人
更新时间:2020-01-20 15:05:59 最新章节:8.4 ROS人工智能
书籍简介
本书遵循由浅入深、由易到难的原则,循序渐进地介绍使用树莓派玩转机器人的必备软硬件知识与技术。全书共8章,第1~4章为树莓派入门部分,主要介绍树莓派软硬件、Scratch和Python编程语言以及各种传感器的使用,并提供丰富的操作案例,方便读者轻松构建树莓派项目。本部分学会之后,读者基本上可以掌握使用树莓派软硬件与第三方软硬件协同工作,搭配和使用传感器亲手搭建一个简单的用于巡线且自动跟随和停止的机器无人车。第5~8章为提高部分,本部分深入地介绍树莓派的各种高级玩法,还将介绍更多、更加智能的第三方软硬件,比如近年来火热的人工智能系列传感器以及机器人操作系统ROS的使用,同时兼顾PC和手机操作,为读者玩转机器人提供更多的趣味场景。本书的特点是使用低成本硬件,趣味性和可操作性强,适合对树莓派及机器人感兴趣的各类读者阅读。
品牌:清华大学
上架时间:2019-11-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
陈佳林
同类热门书
最新上架
- 会员DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17.1万字
- 会员本书系统地探讨了人工智能对法律行业的深远影响、法律人应该掌握的AI知识以及相关的法律AI工具。本书共14章,分为五部分。第一部分(第1章)介绍了大模型的基础知识以及AI在法律领域的应用趋势和场景,并深入探讨了AI对法律行业带来的影响等。第二部分(第2~6章)针对法律人的主要工作任务,包括类案检索、案情分析、法律咨询、法律文书写作、合同审查等,详细讲解了应该如何使用AI来提升工作效率。第三部分(第7计算机23.8万字
- 会员AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字
- 会员近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字
- 会员全书通过118个实用技巧讲解+118集教学视频演示+160多个素材回复文件+144页PPT教学课件,通过“提问生成+修改润色+热门模板+应用案例”4大专项内容,帮助小白快速成为AI文案高手!本书具体内容包括16种AI提问技巧、13种指令优化技巧、11种高效提问技巧、9种文案修改技巧、7种文案润色方法、11类营销文案指令模板、12类办公文案指令模板、13类自媒体文案指令模板、12类教育学术文案指令模计算机11.6万字
- 会员本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字
- 会员本书共有10章,包括51个实操案例解析和80个行业案例分析。书中内容从技能线和案例线展开介绍。技能线:从人工智能的相关技术入手,不仅介绍了AI训练师的发展历程和行业动态,还重点讲述了AI训练师的职业技能提升方法。案例线:不仅涵盖了AI领域的各个方面,而且非常注重算法与模型的实际应用,通过分析大量的经典案例,可以让读者更好地掌握AI训练的相关技能。计算机11.6万字
- 会员本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字