
会员
规则时代:虚拟现实、人工智能和区块链构建的游戏化未来
更新时间:2019-12-04 19:12:30 最新章节:后记
书籍简介
将来,电影《头号玩家》将成为现实。人类将花费越来越多的时间在类似游戏那样的虚拟空间中生活,形成一个由游戏规则形成的虚拟世界。虚拟现实技术将成为进入这个虚拟世界的入口,人工智能技术成为构建虚拟世界与现实世界共同运行的规则基础,机器人将负责在人工智能指挥下成为执行AI规则的执行者,负责现实世界大部分功能的正常运转。换言之,未来的社会结构将由虚拟和现实共同组成,现实世界是基础,但虚拟世界将会是人们活动的主要空间。期待这样的未来吗?
上架时间:2018-06-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
光速追猎者
同类热门书
最新上架
- 会员本书将带你深入探索AI“神器”——DeepSeek的无限潜能,带你从零开始,轻松掌握AI的核心应用。通过学习本书,你将轻松上手DeepSeek,开启智能生活新篇章;通过学习本书,你将学会用DeepSeek大幅提升工作效率;通过学习本书,你将学会如何让DeepSeek成为你的职场超级助手;通过学习本书,你将学会如何利用DeepSeek激发自己的创作灵感,打造爆款内容和个人品牌;通过学习本书,你将学会计算机7.2万字
- 会员DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17.1万字
- 会员本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字
- 会员本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。计算机8.8万字
- 会员AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字
- 会员青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书将生活中的一些案例和程序算法相结合,深入浅出地为学生讲解不同进制之间的转换、函数计算机3.9万字
- 会员本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。计算机12.9万字
- 会员近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字
同类书籍最近更新
- 会员本书的副书名指出知识工程2.0是智能制造时代的研发智慧,书中的讨论对象和举例均以研发企业或研发过程为背景。但这只是因为研发过程是知识最密集、产出最丰富和应用最深入的过程,并不代表本书所提的方法不适用于非研发型企业。非研发型企业或非研发过程的知识工程方法是本书所提方法的子集,大部分方法进行适应性改造,即可适用于这些企业或过程。人工智能13.9万字
- 会员本书视角独特,将软件工程中的方法应用到机器学习实践中,重视方法论和工程实践的融合。本书主要有3个特点。1)机器学习的软件工程方法:用软件工程(SoftwareEngineering)中的工具、方法和理论指导机器学习的实践活动。主要体现在测试驱动开发(TDD)方法、机器学习项目管理方法、工程化软件应用于数据科学标准化环境,以及开源算法包的大量实践应用案例等。2)机器学习全生命周期:书中全面呈现了机人工智能22.4万字